三角比の計算が分かりません

高校生用の質問にご利用ください。
フォーラムルール
新規投稿は質問のみとさせていただきます。
返信する
ゲスト

三角比の計算が分かりません

投稿記事 by ゲスト »

数学について質問です。
△ABCにおいてsinA:sinB:sinC=7:5:3ときこの三角形の最も大きい角の大きさを求めよ。
お願いします。


答えだけあるので解説をお願いします。120度です。
ゲスト

Re: 三角比の計算が分かりません

投稿記事 by ゲスト »

正弦定理より
a/sinA=b/sinB=c/sinC=k
とおくと、

sinA=a/k
sinB=b/k
sinC=c/k

条件に代入すると
a/k:b/k:c/k=a:b:c=7:5:3
となります。

3辺の比が同じなら相似となり、
相似ならどのような三角形も角度は同じなので、
a=7
b=5
c=3
という三角形を考えます。

aが一番長いので、bとcがはさむ角が最も大きいので、
余弦定理より

$a^2=b^2+c^2-2bc*cosθ$
49=25+9-30cosθ
15=-30cosθ
cosθ=-15/30=-1/2

0°<θ<180°
なので、
θ=120°
となります。
返信する